NCHRP 9-59 Update

September 12, 2016 FHWA Binder ETG Fall River, MA

Advanced Asphalt Technologies, LLC

"Engineering Services for the Asphalt Industry"

NCHRP 9-59 Objective

The primary objective of NCHRP 9-59 is to develop a test or tests that will help to effectively and efficiently control the properties of asphalt binders that contribute to the fatigue resistance of asphalt mixtures

Presentation Objective

Describe general approach to developing an improved binder fatigue test
 Provide summary of results to date
 Describe future efforts

Problem

ME State Rt 163 Presque Isle – Mapleton Severe raveling 10yr (thru wearing course at 5 yr)

Hwy 41 North of Kaladar (1999)

Hesp et al., Proceedings CTAA, 2009

Bill Ahearn, Pamela Marks, Simon Hesp

Problem

- Can |G*| sin δ be improved? Added to? Replaced?
- Effect of modulus on fatigue performance
- Relationship between fracture and fatigue performance
- Binder vs mix

Generalized Failure Theory

$$N_{f} = \left(\frac{FSC}{\varepsilon_{binder}}\right)^{1.38(90/\delta)} \qquad \begin{bmatrix} FSC = fatigue strain \\ capacity \end{bmatrix}$$
$$N_{f} = \left\{\frac{FSC}{[\varepsilon_{mix}/(VBE/100)]}\right\}^{1.38(90/\delta)} \qquad \begin{bmatrix} Phase \ angle \ \delta \\ is \ for \ the \\ binder, \ not \\ the \ mix... \end{bmatrix}$$

 $FSC = D^{\delta/(90 \times 1.38)}$

 δ

Typical Failure Envelope

Fatigue/Fracture Performance Ratio, FFPR

 $FFPR = \frac{Measured \ FSC \ or \ \varepsilon^*}{Typical \ FSC \ or \ \varepsilon^*}$

Typical FSC or $\varepsilon^* = \frac{1}{6.56 \times 10^{-3} S(T,t)^{0.0482} + 1.35 \times 10^{-9} S(T,t)^{1.10}}$

FFPR is simply the ratio of observed to expected failure strain. Values significantly above 1 are good, below 1 are bad. The equation above is preliminary.

Binder Test Methods DSR frequency sweep (R value) Modified double edge notched tension (DENT) Linear amplitude sweep (LAS) Single edge notched bending (SENB) Various others from existing data

Master Curve PG 76-22

Modified DENT Test

- Standard ductility batch
- Molds/specimens same as for forceductility but with double 2.5-mm notch
- 50 mm/min
- Temperature 10 to 20 C

Modified DENT as a Tension Test: ALF Air Blown at 20°C

- Sample 1 Tan. Mod.
- Sample 2 Tan. Mod.
- Sample 3 Tan. Mod.
- Relaxation Modulus

LAS Test for PG 64-22

Preliminary Results: Testing of ALF Binders

ALF Fatigue Experiments

- Most of the binders for the first and second ALF fatigue experiments were tested
- These included PG 70-22, air blown binder, Terpolymer, SBS-LG, crumb rubber binder, AC 5 and AC 20
 RTFOT aging

ALF Binders: Correlation among FFPR Values

ALF Binders: Correlation Between Cracking and FFPR: ALF 1 & 2, 100 mm **Test Sections**

ALF Binders: Correlation Between Cracking and FFPR: ALF 1 & 2, 100 mm **Test Sections**

NCHRP 9-59 Test Plans

NCHRP 9-59 Tests

Many binder tests correlated to ALF fatigue performance

- Will this approach work for 9-59 materials and test methods?
 - Will binder and mixture test data correlate?
 - Will test data match expected performance

NCHRP 9-59 Binders

	No.	Additive	PG Grade	Comments
	1	SBS	88-22	Grade is approximate; 64-22 base, 6 %+ SBS
	2	SBS	76-28	
	3	SBS/PPA	76-22	
	4	SBS	64-28	Base binder = 58-28; SBS % = 2.0-2.5%
	5	SBR	70-22	Base binder = 64-22; SBR % = 2.5-3.5% (terminal blend)
	6	EVA	76-22	
	7		58-28	
	8		64-22	source 1
	9		64-22	source 2; significantly different chemistry/rheology
	10	GTR	70-22	terminal blend
	11	oxidized	70-22	
	12	oxidized	76-16	
	13	REOB	58-28	source 1
	14	REOB	58-28	source 2; significantly different chemistry/rheology
Ce	15	Terpolymer	58-34	
Tec	16	PPA	70-22	

NCHRP 9-59 Mixture Testing Uniaxial fatigue (SVECD) - Two temperatures - Three replicates (Texas overlay test) - 20°C - Three replicates Bending beam fatigue

NCHRP 9-59 Mixture Design

- 9.5 mm nominal maximum size
- Blend of granite, limestone and sand
- 6.0 % binder content
- Designed at 4.0 % air voids at 80 gyrations
- Compacted to 7.0 % air voids for most tests

NCHRP 9-59: Laboratory Aging

Binders: RTFOT + 40 hour PAV

 Mixture: Standard short term aging followed by loose mix aging at 95°C for 5 days.

Based on data available at the start of the project, which was very limited

Comparison of Mix and Binder Laboratory Aging

T at G" = 5,000 kPa

Preliminary NCHRP 9-59 Results

Modified DENT Test Results

Binder	Temp	Stiff/3, Pa	Fail. Strain, %	Expected FS, %	FFPR
PG 76-22 SBS	15	1.07E+06	71	55	1.30
	20	2.40E+05	105	68	1.55
PG 64-22	15	1.26E+06	53	52	1.03
	20	6.23E+05	62	64	0.97
PG 58-28 REOB	15	6.07E+05	50	65	0.78
	10	1.05E+06	47	55	0.86

LAS Test Results

	Binder	Temp	G*, Pa	Avg. FSC, %	Exp. FSC, %	FFPR
	PG 76-22 SBS	20	2.28E+07	8.01	5.84	1.37
	PG 64-22	20	1.70E+07	6.76	7.82	0.86
ation sphalt	PG 58-28 REOB	20	1.80E+07	7.71	7.39	1.04

Uniaxial Fatigue Results

Binder	Temp	G*	Avg. FSC, %	Exp. FSC, %	Avg. FFPR
PG 76-22 SBS	15	4.49E+07	3.30	2.90	1.14
	21	2.28E+07	7.57	5.84	1.31
PG 64-22	12	5.49E+07	1.75	2.35	0.74
	18	3.01E+07	4.38	4.40	0.99
PG 58-28 REOB	6	4.19E+07	1.96	3.12	0.63
	12	2.38E+07	3.78	5.60	0.67

Texas Overlay Test Results

Binder	Temp	G*	Cycles	Avg. FSC, %	Exp. FSC, %	Avg. FFPR
PG 76-22 SBS	20	3.59E+06	102	44	29	1.51
PG 64-22	20	3.95E+06	24	29	27	1.07
PG 58-28 REOB	20	1.86E+06	32	28	43	0.65

NCHRP 9-59 Data Compared to Typical Failure Envelope

Mix Uniaxial Fatigue vs Binder MDENT

Using Average Mix FFPR and Energy-Based DENT FFPR

Energy-Based DENT FFPR

Mix Uniaxial Fatigue vs LAS

Mixture Uniaxial Fatigue vs R

Texas Overlay vs MDENT

Texas Overlay vs LAS

Interim Findings

The proposed general failure theory and failure envelope appear to provide a powerful tool for evaluating the fatigue and fracture resistance of asphalt binders and mixes

Interim Findings

The RTFOT + 40 hour PAV binder aging appears to produce a similar degree of aging as the 5 day loose mix aging at 95°C, but much more research is needed to verify and fine tune these aging protocols

Interim Findings

- The modified DENT test correlates very well to both field fatigue performance in the FHWA ALF studies and in laboratory tests conducted in the first stage of NCHRP 9-59 testing.
 The LAS test is also promising...we
 - may need to make adjustments

Future work

- Additional binder testing: 13 more binders and including SENB test
 Healing study
 Parametric study on relationship between modulus and fatigue performance
- Validation testing

Acknowledgements

- Those I have borrowed data from...
- Support of NCHRP
- The NCHRP Panel
- Industry suppliers
- Nam Tran and his associates at NCAT
- My associates at AAT, including Ray, Don, and Bob

